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INTRODUCTION 

Researchers conduct scientific studies on sales fore-
casting for businesses in order to discover effective 
predictive tools. Promising results can then be used 
by companies as forecasting methods in their Pre-
diction Systems (PS). In turn, an effective PS sup-
ports the operational management of an enterprise 
[Daft and Marcic 2011, Griffin 2015]. Operational  
management is an important element in achieving 
a company’s strategic objectives. The author’s re-
search into the effectiveness of specific forecasting 
models can be used to provide a specific telecommu-
nication company with a useful support structure for 

price calculations, financial planning, and effective 
network management. 

The aim of this research study was to test and com-
pare two models, i.e. the feedforward neural network 
and the regressive-neural model, in terms of their ef-
fectiveness in modelling and forecasting the demand 
for telecom services. In the case of the second mod-
el, i.e. the regressive-neural model, the feedforward 
neural network was applied to reflect the variability 
which was received after the elimination of a deter-
ministic component. Various methods of eliminating 
deterministic components from data can be found in 
the research literature on the subject [Makridakis and 
Wheelwright 1989, Box et al. 1994, Makridakis et al. 
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1998]. According to Masters [1993], neural networks 
can be better taught if deterministic components are 
removed from data. This enables a neural network to 
focus its capabilities on a nonlinear and smaller vari-
ability. This approach, according to Masters, enables 
researchers to obtain better results than with the use of 
a neural network for the modelling and forecasting of 
a full variability. Under Masters’ approach, a regres-
sion model or other technique should be used to pre-
pare data for a neural network model. This combina-
tion of both models is called a regressive-neural model 
or integrated model [Kaczmarczyk 2006, 2016].

This study undertook examination of the follow-
ing hypothesis: When conducting short-term forecast-
ing of the demand for telecom services, an integrated 
model allows for more accurate results than a non-in-
tegrated neural network model. The attempt to verify 
this hypothesis was conducted on the basis of the ob-
tained values for the following coefficients: fit coef-
ficients, autocorrelation coefficients, partial autocor-
relation coefficients, and the average errors of expired 
forecasts ex-post.

The research was conducted by examining empiri-
cal material which was provided by one telecommu-
nications network operator. The material included the 
number of seconds (hourly) of outgoing calls from 
the operator’s network according to: type of 24-hour 
cycle, connection category, and subscriber group. The 
data contained a variety of analytical sections which 
facilitated multi-dimensional analyses to help gauge 
the effectiveness of the examined methods in forecast-
ing demand.

THE ISSUE OF FEEDFORWARD NEURAL 

NETWORKS

Many business applications of artificial neural net-
works are known [Smith and Gupta 2002, Zhang 
2004]. In order to conduct this study (described in the 
empirical section of the article), feedforward neural 
networks were used [Rojas 2013]. In such networks, 
neurons are usually arranged in layers, and inter-neu-
ronal connections are applied only to the neurons in 
neighbouring layers (Fig. 1). The typical structure of 
a feedforward multilayer neural network in the field 
of neural networks is often called a multilayer percep-
tron. The input layer, which consists of input buffers, 
is the first layer. The number of input neurons is equal 
to the dimension of input vector X. The input layer is 
characterised by the fact that signals only come out of 
this layer. The output layer is the last layer of the net-
work. The number of neurons in this layer corresponds 
to the dimension of given vector d from the pair of 
training vectors (X, d). In particular, the output layer 
may contain one neuron. There are no signals from the 
output layer to other layers. All other layers of neu-
rons, placed between the input layer and the output 
layer, are called hidden layers. The number of neurons 
in these layers can vary. In many practical cases, one 
hidden layer is used. Each hidden layer receives input 
signals from the preceding layer and sends its output 
signals to the layer following it. In some applications, 
interlayer connections relate not only to neighbouring 
layers, but also to distal layers. In each case, however, 
there is one direction of the signal flow – from the 
input to the output. 

Fig. 1. The exemplary structure of a multilayer perceptron
Source: Author’s own coverage with the use of Neuronix programme. 
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In the research study, the feedforward neural net-
work was tested as the non-integrated technique and as 
a segment in the integrated model (i.e. the neural net-
work worked as the tool which was integrated with the 
regression model). In the literature on the subject, two 
types of neural data representation are described: one-
-of-N or N-in-one. In the first, the input layer of a neural 
network should involve the number of neurons that is 
equal to all possible values of input variables. It is usu-
ally implemented in the case of nominal scale. Thus, 
when a researcher considers, for example, the variable 
of “hours during the day”, he assumes 24 neurons in 
the input layer because the variable takes 24 possible 
levels and each level requires a separate neuron. When 
it comes to neural data representation N-in-one, a re-
searcher assumes one neuron for one variable. So, all 
levels of the variable will be given to the same neuron 
in the learning process or testing process.

An unwanted phenomenon during the network 
learning process is to stop the learning at a local min-
imum of the error function. The learning process of 
neural networks is a very complex issue [Tiliouine 
2007]. A simplified error function of neural networks 
is presented in Figure 2.  The local minimum of the 
error function was marked in red (the arrow point-
ing downwards) and the global minimum of the  error 

function was marked in green (the arrow pointing 
upwards).

Research literature describes various techniques to 
avoid stopping the learning process of a neural net-
work at a local minimum of the error function. Some 
of these techniques include: methods based on a glo-
bal optimization algorithm (genetic algorithms, simu-
lated annealing); random change in the order of giving 
learning samples (patterns) after each learning epoch; 
the multi-start method (which involves the multiple 
estimation of a neural network at the different, ran-
dom, and initial values   of weights); and the method 
using the momentum coefficient.

PRESENTATION OF DATA AND RESEARCH 

ASSUMPTIONS

The modelled and forecasted demand (response vari-
able Y) was hourly counted seconds of outgoing calls 
within the framework of several different analytical 
sections. From this, the constructed models (the neural 
model and the regressive-neural model) can be consid-
ered as multi-sectional models [Kaczmarczyk 2016, 
2017]. In order to identify the analytical sections, 
classification factors were specified. The classifica-
tion factors were as follows: hours during 24 hours; 

The red arrow (pointing downwards) indicates the local minimum of the error function, the green arrow (pointing upwards) indi-
cates the global minimum of the error function.

Fig. 2. A simplified exemplification of the error function of neural networks
Source: Author’s own coverage on the basis of exemplary data.
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type of 24 hours; connection categories; subscriber 
groups. The particular analytical levels (sections) of 
each classification factor were distinguished. For ex-
ample, if the subscriber groups were considered as the 
classification factor, only two levels were taken into 
account (business subscribers and individual subscrib-
ers). Each assumed classification factor and its levels 
are presented in Table 1.

For example, 24-hour cycles of demand for outgo-
ing calls (generated by the separate subscriber groups) 

during the chosen working 24 hours (Wednesdays) in 
a period of one year are presented in Figure 3.

There were 35 total levels of classification fac-
tors. Within the framework of all the neural networks, 
one-of-N was adopted as the type of neural data repre-
sentation. Therefore, each of the classification factors 
was treated as an explanatory (independent) variable 
during the preparation of the neural model or the re-
gressive-neural model. The number of explanatory 
variables was 35.

Table 1. Each classification factor and its assumed levels

Variable
marking

Classification
factor

Levels of classification 
factor

X1 hours during 24 hours

x1, 1 – 12 am–01 am

x1, 2 – 01 am–02 am

x1, 3 – 02 am–03 am

x1, 4 – 03 am–04 am

x1, 5 – 04 am–05 am

x1, 6 – 05 am–06 am

x1, 7 – 06 am–07 am

x1, 8 – 07 am–08 am

x1, 9 – 08 am–09 am

x1, 10 – 09 am–10 am

x1, 11 – 10 am–11 am

x1, 12 – 11 am–12 pm

x1, 13 – 12 pm–01 pm

x1, 14 – 01 pm–02 pm

x1, 15 – 02 pm–03 pm

x1, 16 – 03 pm–04 pm

x1, 17 – 04 pm–05 pm

x1, 18 – 05 pm–06 pm

x1, 19 – 06 pm–07 pm

x1, 20 – 07 pm–08 pm

x1, 21 – 08 pm–09 pm

x1, 22 – 09 pm–10 pm

x1, 23 – 10 pm–11 pm

x1, 24 – 11 pm–12 am

Variable
marking

Classification
factor

Levels of classification 
factor

X2 types of 24 hours

x2, 1
–  working 

24 hours

x2, 2 – Saturday

x2, 3 – Sunday

X3 connection categories

x3, 1
–  mobile 

networks

x3, 2

–  local calls 
to the same 
network

x3, 3

–  local calls 
to other 
networks

x3, 4 – trunk calls

x3, 5
–  international 

calls

x3, 6
–  other 

connections

X4 subscriber groups
x4, 1

–  business 
subscribers

x4, 2
–  individual  

subscribers

Source: Author’s own coverage.
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Fig. 3.  The hourly measurements of time (seconds) of outgoing calls generated by business or individual subscribers dur-
ing working days 

Source: Author’s own coverage.

Business subscribers

Individual subscribers
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The research was carried out to compare and asses 
the effectiveness of the two different tools (the neu-
ral model and the regressive-neural model) in the 
short-term forecasting of the multi-sectional demand 
for telecom services. The explanatory variables were 
adopted as dichotomous variables in both the tested 
techniques. Dichotomous variables take only 0 or 1 
(0 when the analysed level of a classification factor 
does not occur, or 1 when the analysed level of a clas-
sification factor occurs). 

The non-integrated neural network model was the 
first analysed tool. Then, the second model, i.e. the re-
gressive-neural model, was studied. In both cases, the 
effectiveness of the approximation and the forecasting 
of response variable Y was checked. 

In the case of the regressive-neural model, the fol-
lowing stages were implemented:
1. The estimation of the linear (multiple) regression 

model. The regression model was used to capture 
typical demand values for telecom services that are 
generated in the distinguished analytical sections:
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4. The modelling and the forecasting of residual val-
ues of the regression model by the use of the neural 
model:

(

)

(

)

(

1,1 1,24 2 ,1 2 ,2 2 ,3 3 ,1

3 ,6 4 ,1 4 ,2

1,1 1,24 2 ,1 2 ,2 2 ,3 3 ,1

3 ,6 4 ,1 4 ,2

1,1 1,24 2 ,1 2 ,2 2 ,3 3 ,1

3 ,6 4

, ..., , , , , ,

..., , , , ,

, ..., , , , , ,

..., , , , , 1, 2, ..., ,

ˆ , ..., , , , , ,

..., ,

=

Π

=

π =

=

t

t t t t t t t

t t t t

t t t t t t t

t

Z f X X X X X X

X X X

z f x x x x x x

x x x t n

z f x x x x x x

x x ),1 4 ,2, , 1, 2, ..., ,=t tx t n

or

(

)

* * * * * *
1,1 1,24 2 ,1 2 ,2 2 ,3

* * * *
3 ,1 3 ,6 4 ,1 4 ,2

, ..., , , , ,

, ..., , , ,

1, 2, ..., .

T T T T T T

T T T T

z f x x x x x

x x x x

T n n n h

=

= + + +

5. The correction of values obtained with the use of 
the regression model by the residuals obtained with 
the neural model, in order to construct the origin 
demand/correction of the prediction, as obtained 
with the regression model by the prognostic (neu-
ral) residuals, in order to forecast demand:

ˆ ˆ ˆ , 1, 2, ..., ,= + =t t td y z t n

or

* * * , 1, 2, ...,T T Td y z T n n n h= + = + + + .

The conception of the regressive-neural model is 
that the regression model was used as the filter of de-
mand (Y) and the neural model was applied to con-
struct a remain variability (i.e. regression errors) by 
using the same explanatory variables as in the case of 
the regression model.

In both the tested models (the neural model and 
the regressive-neural model), a selected type of neural 
networks was used, i.e. the feedforward neural net-
work. The logistic function was applied as the activa-
tion function of the neurons. The chosen neural data 
representation (one-of-N) means that the number of all 
levels of classification factors is equal to the number 
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of neurons in the input layer of the neural network. 
The architecture of the tested neural network resulted 
from the structure of the data and the assumed neural 
data representation. Regarding the structure of the data 
and the adopted neural data representation, the input 
layer of the tested neural models included 35 neurons 
in the author’s research study. Due to the fact that the 
forecasted variable (representing demand) was only 
one, the output layer of the neural networks involved 
only one neuron.   

Both the models were estimated on the basis of the 
same data and the same period. This uniformity ena-
bled the transparent comparison of the usefulness of 
the tested tools (which was the aim of the study).

The error backpropagation algorithm was ap-
plied in the learning process. Weights of the neural 
networks were corrected after each gave the learning 
pattern from the learning set (i.e. the learning pattern 
was understood as 35 values, which equalled 0 or 1, 
relating to the explanatory variables and a value of 
the response variable). As a criterion for assessing the 
neural models, the testing error was assumed. 

The following methods were used in order to re-
duce the probability of stopping the learning process 
at a local minimum of the error function: the learning 
patterns mixing in each epoch; the momentum coef-
ficient; and the multi-start method.

When it comes to the selection of the architecture 
of the neural network, the empirical method was used. 
This method consists of testing many neural networks 
with various numbers of hidden layers and various 
numbers of neurons in these layers. In both the tested 
models (the neural model and the regressive-neural 
model), the following architectures of the neural net-
works were tested: 35-35-1, 35-30-1, 35-25-1, 35-20-1,
35-15-1, 35-10-1, 35-5-1. Based on the number of 
constructs, seven non-integrated neural model experi-
ments and seven regressive-neural model experiments 
were carried out. Each of these 14 experiments was 
based on: 
− the decuple estimation of the particular neural 

model with the determined architecture;
− the comparison of the obtained estimation effect; 
− the selection of the best-fitted neural model for 

each of the tested architectures. 
After concluding the above-described experiments, 

the best-fitted model was chosen. 

The basis of the comparison between the goodness 
of neural model fit and the goodness of regressive-neu-
ral model fit was: R2, the autocorrelation function and 
the partial autocorrelation function of the residuals.

The forecast’s accuracy, which was obtained by the 
use of both the compared techniques, was proved by 
means of the mean absolute error (MAE) and the root 
mean square error (RMSE). Both the errors related to 
expired forecasts ex-post. The formulas of the above- 
-mentioned errors are as follows: 
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where:
T – a forecast horizon,
n –  the number of observations which were used in 

the estimated models.

In order to compare the neural model and the re-
gressive-neural model, the same forecasting period 
was adopted. This assumption enabled the clearest 
comparison of the two techniques.

RESEARCH RESULTS AND DISCUSSION

Estimation of both the tested models was carried out 
on the basis of the data for the period from January 1 
to February 20 of a selected year. Both models were 
estimated from data which included 14,688 cases. The 
period February 21–28 was assumed as the forecasting 
period.

The learning process characteristics of the neural 
networks in both models are presented in Table 2.

The values of the parameters of neural network 
learning and testing were selected on the basis of the 
conducted experiments. The higher the learning coeffi-
cient, the faster the solution search speed. The momen-
tum coefficient affects the stability of a network’s learn-
ing process. The higher the value of this coefficient, the 
higher the inertia of a neural network’s learning proc-
ess. The tolerance coefficient is used to determine the 
permissible error on a single network output. The toler-
ance coefficient is in the range of 0–1 (which is dictated 
by the logistic activation function whose values belong 
to the same range). A low tolerance coefficient means 
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Table 2.  The values of the learning and testing parameters 
of the neural networks

Coefficient name Value or yes/no

Learning coefficient 0.8

Momentum coefficient 0.6

Learning tolerance 0.15

Testing tolerance 0.25

Bias coefficient yes

Source: Author’s own coverage.

Table 3.  The learning process of the neural model that was 
chosen after all the experiments

ε Epoch
Learning Testing

RMSE Out of
tolerance RMSE Out of

tolerance

0.100 4 0.0948 1 291 0.0987 0

0.090 3 0.0849 417 0.0872 0

0.080 3 0.0770 298 0.0789 0

0.070 10 0.0702 164 0.0698 0

0.060 18 0.0620 148 0.0597 0

0.050 34 0.0529 147 0.0498 0

0.045 41 0.0479 145 0.0449 0

0.040 82 0.0436 132 0.0397 0

0.035 It was not reach after caring out of 1 000 epoch

*Value of ε is RMSE threshold of testing set, below which the 
network learning process was stopped; the neural network 
model architecture: 35-20-1.

Source: Author’s own calculations.

Table 4.  The learning process of the neural model that was 
chosen as part of the regressive-neural model

ε Epoch
Learning Testing

RMSE Out of
tolerance RMSE Out of

tolerance

0.100 7 0.0943 1 854 0.0979 33

0.090 2 0.0872 1 398 0.0887 6

0.080 3 0.0804 1 183 0.0797 2

0.070 4 0.0725 459 0.0685 0

0.060 18 0.0618 354 0.0599 0

0.055 27 0.0574 287 0.0548 0

0.050 53 0.0522 157 0.0494 0

0.045 It was not reach after caring out of 1 000 epoch

*Value of ε is RMSE threshold of testing set, below which the 
network learning process was stopped; the neural network 
model architecture: 35-20-1.

Source: Author’s own calculations.

that only results that are very close to the pattern are ac-
ceptable. Bias determines whether an additional neuron 
whose output is equal to 1 is to be used. If it is used, 
all neurons in the hidden and output layers are con-
nected to this additional neuron. This solution results 
in better stability during the learning process and is a 
classic example of improving network performance.

The volume of the testing set was 15% of the total 
data set, i.e. 14,688 × 15% = 2,203 cases. The volume 

of the learning set was 85% of the total data set, i.e. 
14,688 × 85% = 12,485 cases. The testing set was as-
sumed in such a way that it contained the cases related 
to all tested analytical sections (e.g. categories of con-
nections, groups of subscribers).

The criterion of stopping the learning process was 
understood as achieving an assumed RMSE threshold. 
The threshold was minimised during the learning pro-
cess. The obtained value of the RMSE was the basis 
of the assessment of the right neural network topology 
and the right weights values.

When it comes to the non-integrated neural model, 
the best results of the learning process were obtained 
for network architecture 35-20-1. This learning pro-
cess is shown in Table 3.

During the experiments with the use of the regres-
sive-neural model, the best results were achieved by the 
use of neural model architecture 35-20-1 (Table 4).

The R2 of the neural model and the regressive-
-neural model amounted to 0.8112 and 0.9198, respec-
t ively. So, in the case of the regressive-neural model, 
the value of R2 indicated much a better fit of the model 
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to the data. The goodness of the fit of the regression 
model (which was considered as a module of the re-
gressive-neural model) was as follows: R2 0.4971, 
standard error of the estimate 58,177.46.

The next object of research was the autocorrela-
tion function and the partial autocorrelation function 

of the model’s residuals. This research showed that 
repetitions are visible in the 24-hour cycle. How-
ever, in the case of the regressive-neural model, the 
repetitions were evidently lower in comparison to the 
non-integrated neural network (Fig. 4). This was be-
cause the non-integrated neural network was unable 

Fig. 4.  The autocorrelation function (ACF) and the partial autocorrelation function (PACF) of the neural model residuals 
and the regressive-model residuals

Source: Author’s own calculation.

The neural model

The regressive-neural model
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Fig. 5. Scatter plot of the neural model residuals and the regressive-neural residuals
Source: Author’s own calculation.

to effectively model so many levels of demand. The 
regressive-neural model was characterised by a higher 
effectiveness in terms of its ability to make approxi-
mations.

Unusual observations (influence observations and 
outliers) were recognised in the data (Fig. 5). They 
were confirmed with the use of calculated Cook’s dis-
tances and standardised residuals. However, the  unusual 

The neural model

The regressive-neural model
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 observations were left without any changes because of 
the risk of effacing the real patterns [Dittman et al. 2011]. 

The analysis of the scatter plot of the regressive-
-neural model residuals and the normal probability 

plot of these residuals (Fig. 6) confirmed the better fit 
of this model to the data. 

In both cases, the highest values of the residuals can 
be observed during peak hours (which were  different 

Fig. 6. Normal probability plot of the tested models
Source: Author’s own calculation.
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for both the subscriber groups). This analysis showed 
that the residuals of the second model are character-
ised by evidently lower values in comparison to the 
non-integrated model (Fig. 5). Moreover, one can dif-
ferentiate the distribution of the integrated model re-
siduals from distribution of the non-integrated model 
residuals through their similarity to the normal distri-
bution (Fig. 6).

The effectiveness of the prediction for both of the 
tested techniques are  shown in Figure 7. 

The forecasting errors indicated that the predictive 
accuracy of the regressive-neural model is much higher 
in comparison to the non-integrated neural model. In 
the case of the integrated model, both the average errors 
of forecasts (the RMSE and MAE) were significantly 
lower than in the case of the neural network model.

CONCLUSIONS

The obtained research results confirmed the hy-
pothesis. They show that the regressive-neural model 
allows for better results in terms of the approximation 
and the short-term forecasting of multi-sectional de-
mand for telecom services than does the non-support-
ed neural model. This conclusion can be formulated 
on the basis of the received values of the following 
coefficients: R2, the autocorrelation coefficients, the 
partial autocorrelation coefficients, and the average 
errors of expired forecasts ex-post.

Further research in this field could be based on the 
comparison of neural network models and regressive-
-neural models within the framework of a lower 

number of analytical sections (e.g. only within the 
business group, or even only within the business group 
and working 24 hours). Moreover, if a regression mod-
el were to be constructed on single analytical section, 
the variable Yt-1 in the regression model would cause 
a better fit to the data.

A higher goodness of the model fit and the fore-
casting accuracy in terms of demand could also be 
achieved by separating particular types of 24 hours. 
The phases of the cycle of demand in different catego-
ries of connections within the same subscriber group 
and during the same type of 24 hours are very simi-
lar. So, it is possible to reduce the complexity of their 
approximation. 
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Fig. 7. Comparison of the forecasting effectiveness of the neural model and the regressive-neural model
Source: Author’s own calculation.
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JEDNOKIERUNKOWE SIECI NEURONOWE W PROGNOZOWANIU 

WIELOPRZEKROJOWEGO POPYTU NA USŁUGI TELEFONICZNE – 

PORÓWNAWCZE BADANIA EFEKTYWNOŚCI DLA DANYCH GODZINOWYCH 

STRESZCZENIE

Zaprezentowane wyniki badań są związane z systemem prognostycznym przeznaczonym dla operatorów 
telekomunikacyjnych, ponieważ są skoncentrowane na sposobie konstrukcji modelu do efektywnego pro-
gnozowania popytu na usługi połączeniowe. Artykuł zawiera wyniki porównawczych badań efektywności 
modelu sieci neuronowej i modelu regresyjno-neuronowego (zintegrowanego) w zakresie krótkookresowego 
prognozowania zapotrzebowania na usługi telefoniczne. Jako model sieci neuronowej zastosowany został 
model sieci jednokierunkowej. Model regresyjno-neuronowy został zbudowany na podstawie połączenia dy-
chotomicznej regresji liniowej wieloprzekrojowego popytu i jednokierunkowej sieci neuronowej, która słu-
żyła do modelowania reszt modelu regresji (tj. pozostałej zmienności). Zmienną objaśnianą były sumowane 
co godzinę liczby sekund rozmów wychodzących z sieci wybranego operatora. Połączenia telefoniczne były 
analizowane pod względem: typów doby, kategorii połączeń i grup abonentów. Wyszczególniono 35 zmien-
nych objaśniających, które wykorzystano w procesie estymacji obu porównywanych modeli. Stwierdzono, 
że model regresyjno-neuronowy charakteryzuje się większymi możliwościami aproksymacyjnymi i predyk-
cyjnymi niż niezintegrowany model neuronowy.

Słowa kluczowe: system prognostyczny, jednokierunkowa sieć neuronowa, model regresyjno-neuronowy, 
prognozowanie 




